NTLJD2105L

POWER MOSFET

8 V, 4.3 A, μ Cool ${ }^{\text {TM }}$ High Side Load Switch with Level Shift, 2x2 mm WDFN Package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads Offers Excellent Thermal Performance
- Low $\mathrm{R}_{\mathrm{DS}(\text { on })} \mathrm{P}$-Channel Load Switch with N-channel MOSFET for Level Shift
- N Channel Operated at 1.5 V Gate Drive Voltage Level
- P Channel Operated at 1.5 V Supply Voltage
- Same Footprint as SC88
- Low Profile (<0.8 mm) Allows it to Fit Easily into Extremely Thin Environments
- ESD Protection
- These are $\mathrm{Pb}-$ Free Devices

Applications

- High Slide Load Switch with Level Shift
- Optimized for Power Management in Ultra Portable Equipment

MOSFET(Q2) MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter			Symbol	Value	Unit
Q2 Input Voltage (V_{DS}, P-Channel)			$\mathrm{V}_{\text {IN }}$	8	V
Q1 On/Off Voltage (VGs, N -Channel)			$\mathrm{V}_{\text {ON/OFF }}$	6	V
Continuous Load Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	IL	4.3	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		3.1	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1.56	W
Continuous Load Current (Note 2)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	IL	2.5	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		1.8	
Power Dissipation (Note 2)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.52	W
Pulsed Load Current	$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$		ILM	20	A
Operating Junction and Storage Temperature			$\begin{gathered} \mathrm{T}_{\mathrm{J},} \\ \mathrm{~T}_{\text {STG }} \end{gathered}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode) (Note 2)			Is	-2.7	A
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area $=1.127$ in sq [2 oz] including traces)
2. Surface-mounted on FR4 board using the minimum recommended pad size.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

$\mathbf{V}_{\text {INMAX }}$	$\mathbf{R}_{\text {DS(on) }}$ MAX	I \mathbf{I} MAX
20 V	$50 \mathrm{~m} \Omega$ @ 4.5 V	4.3 A
	$60 \mathrm{~m} \Omega @ 2.5 \mathrm{~V}$	
	$80 \mathrm{~m} \Omega$ @ 1.8 V	
	$115 \mathrm{~m} \Omega @ 1.5 \mathrm{~V}$	

$$
\begin{array}{ll}
\text { JN } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { " } & =\text { Pb-Free Package }
\end{array}
$$

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

NTLJD2105L

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$\mathrm{R}_{\theta J \mathrm{~A}}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - $\mathrm{t} \leq 5 \mathrm{~s} \mathrm{(Note} \mathrm{3)}$	$\mathrm{R}_{\theta J \mathrm{~A}}$	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Steady State Min Pad (Note 4)	$\mathrm{R}_{\theta J \mathrm{~A}}$	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area $=1.127$ in sq [2 oz] including traces).
4. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Q2 Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		-8.0			V
Q2 Forward Leakage Current	I_{FL}	$\begin{gathered} \mathrm{V}_{\text {ON/OFF }}=0 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }}=8.0 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			0.1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$			1	
Q1 Gate-to-Source Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} 1}= \pm 6 \mathrm{~V}$				± 100	nA
Q1 Diode Forward On-Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS} 1}=0 \mathrm{~V}$			-0.8	-1.1	V

ON CHARACTERISTICS

Q1 ON/OFF Voltage	$\mathrm{V}_{\text {ON/OFF }}$		1.5		8.0	
Q1 Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS1}}(\mathrm{TH})$	$\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{DS} 1}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.40		1.0	V
Q2 Input Voltage	$\mathrm{V}_{\text {IN }}$		1.8		8.0	V
Q2 Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=4.0 \mathrm{~A}$		33	50	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=3.0 \mathrm{~A}$		40	60	
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.7 \mathrm{~A}$		60	80	
		$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.2 \mathrm{~A}$		75	115	
Q2 Load Current	IL	$\mathrm{V}_{\text {DROP }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$	1.0			A
		$\mathrm{V}_{\text {DROP }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$	1.0			

NTLJD2105L

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 1. Voltage Drop versus Load Current @ $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$

Figure 3. Voltage Drop versus Load Current @ $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$

Figure 2. Voltage Drop versus Load Current @ $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

Figure 4. Voltage Drop versus Load Current @
$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$

NTLJD2105L

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 5. Turn-on
$\left(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=0, \mathrm{C} 1=47 \mathrm{nF}\right)$

Figure 7. Turn-on
$\left(\mathrm{V}_{\mathrm{in}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathbf{3} \Omega, \mathrm{R} 1=10 \mathrm{k} \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{C} 1=47 \mathrm{nF}\right)$

Figure 9. Turn-on
$\left(\mathrm{V}_{\text {in }}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{R} 1=10 \mathrm{k} \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{C} 1=47 \mathrm{nF}\right)$

Figure 6. Turn-off
$\left(\mathrm{V}_{\mathrm{in}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=0, \mathrm{C} 1=47 \mathrm{nF}\right)$

Figure 8. Turn-off
$\left(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{R} 1=10 \mathrm{k} \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega, \mathrm{C} 1=47 \mathrm{nF}\right)$

Figure 10. Turn-off $\left(\mathrm{V}_{\text {in }}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, R 1=10 \mathrm{k} \Omega, R 2=1 \mathrm{k} \Omega, \mathrm{C} 1=47 \mathrm{nF}\right)$

NTLJD2105L

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 11. Thermal Response

Figure 12. Load Switch Application

Components	Description	
R1	Pull-up Resistor	Value
R2	Optional Slew-Rate Control $10 \mathrm{k} \Omega$ to $1.0 \Omega^{\star}$	
$\mathrm{C}_{\mathrm{O}}, \mathrm{C}_{\mathrm{l}}$	Output Capacitance	Typical $0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega^{\star}$
C 1	Usually $<1.0 \mu \mathrm{~F}$	

*Minimum R1 value should be at least $10 \times$ R2 to ensure Q1 turn-on.

ORDERING INFORMATION

Device	Package	Shipping †
NTLJD2105LTBG	WDFN6 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTLJD2105L

PACKAGE DIMENSIONS

WDFN6, 2x2
CASE 506AZ-01
ISSUE A

BOTTOM VIEW

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 mm FROM TERMINAL.
3. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS
4. PINS 2 \& 3 CONNECTED TO LARGE FLAG.
. PIN 6 CONNECTED TO SMALL FLAG.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	0.00	0.05
A3	0.20 REF	
b	0.25	
D	0.35	
D2	0.30	
BSC	0.50	
D3	0.80	1.00
E	2.00 BSC	
E2	0.90	1.10
e	0.65 BSC	
G	0.41	
REF		
G2	0.085	
REF		
K	0.25	

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
μ Cool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

> ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

